

HIGH CAPACITY MICROPILES IN WEAK DOLOMITIC LIMESTONE FOR CRANE FOUNDATION SUPPORT

A Case History in Temporary Foundations

12th International Workshop on Micropiles

Krakow, Poland

June 14, 2014

Terence P. Holman, Ph.D., P.E.

Outline

- Introduction
- Ring Crane Support Requirements
- Development of Constructible Solutions
- Design of Micropile Support
- Load Testing
- Production Pile Installation/Challenges
- Performance of the Ring Crane Foundation

Introduction (Now that's a big crane!)

- Emission and SCR upgrades at major S.E.
 U.S. combined nuclear and coal-fired plant
- Congested environment large, long-radius crane picks
- 1800 metric tonne PTC ring crane, 27 m outside ring diameter
- Tremendous number of partially mapped subsurface utilities

Photo of typical usage and setup for a Mammoet PTC35 ring crane (photo courtesy of Mammoet)

Ring Crane Support Requirements

- Largest crane pick =230 tonnes
- Dedicated, high performance foundation required for support
- 24 steel mats with distributed load of 4.0 MN/ea., total vertical load of 96.5 MN

Crane layout and dimensions (in mm) for a PTC35 ring crane (image courtesy of Mammoet).

Development of Constructible Solutions

- Original design by Owner's consultant was 38, 0.91 m dia. drilled shafts in underlying "limestone"
- Topics not considered in original design
 - Utilities and lack of understanding of locations
 - Limited access for large drilling equipment
 - Poor recent experience with drilled shaft construction adjacent to crane location
- Owner very amenable to value engineered solution
 - 2 to 1 substitution of micropiles for drilled shafts
 - Reduction of pile cap thickness from 1.52 m to 1.22 m

Development of Constructible Solutions

- Bypass weak Ocala Limestone Formation
- Bond zone in Avon Park dolomitic limestone
- 1.78 MN working loads for micropiles
 - 62 minimum piles

BORINGS SCR-1 AND FGD-1 ELEV. 33.3n (FILL) SAND TO SILTY SAND; MEDIUM DENSE TO VERY DENSE ELEV. 31.5m (OCALA FORMATION) SANDY SOFT LIMESTONE; POROUS TO VUGGY: MEDIUM DENSE TO DENSE **ELEV. 23.2m** (OCALA FORMATION) HIGHLY WEATHERED LIMESTONE WITH ELEV. 22.0n SAND AND CLAY; SOFT TO LOOSE (OCALA FORMATION) SANDY SOFT ELEV. 20.8m LIMESTONE; (OCALA FORMATION) HIGHLY WEATHERED LIMESTONE WITH SAND AND CLAY; SOFT TO LOOSE **ELEV. 18.7n** (OCALA FORMATION) SANDY SOFT LIMESTONE; POROUS TO VUGGY; MEDIUM DENSE TO DENSE ELEV. 13.8m (AVON PARK FORMATION) DOLOMITIC LIMESTONE: HARD

Design of Micropile Support

Structural

- Allowable stress design
- Gr. 1034 reinforcing bar with higher allowable stress (0.50 F_{ult})

Geotechnical

 Ultimate bond stress of 690 kPa, developed from previous unfailed tension tests (conservative)

Design of Micropile Support

- 68 micropiles distributed beneath ring foundation
 - Note flexibility for relocating around utilities
- Heavily reinforced ring beam foundation, 1.22 m thick
 - 823 and 626 kN/m line loads
 - 8,450 mm² ring and 1,884 mm² transverse

Load Testing

- Compression load test on sacrificial micropile
- Installed test pile using hard formation roller bit rather than down the hole hammer
- Installed 6 levels of vibrating wire strain gauges
- ASTM D1143-07 Quick Test to 2 × working load, 3.56 MN

Load Testing

Load Testing

- Developed load distribution using Tangent Modulus method
- α_{mob} in the socket was 1.62 MPa, 2.5 × the α_{ult} assumed in design
- Significant residual loads in socket, 0.54 MPa, upon unloading
- Potential to optimize socket length...

Production Pile Installation & Challenges – Utilities and Access

Production Pile Installation & Challenges – Utilities and Access

- 72 piles eventually installed due to utilities
- Local overstressing expected due to as-built pile configuration
 - Some additional reinforcement
 - 22% overstress in SE quadrant

Cap Construction

System Performance

- Total micropile and cap construction took 44 calendar days
- Mammoet 1800 metric tonne ring crane was assembled during December 2009 and January 2010
- Active crane use began in February 2010 and continued until late May 2010
- No performance metrics out of crane operation bounds by on-board measurement

Conclusions

- Value engineering acceptance!
- Micropiles had significant benefit over drilled shafts for support of this crane in difficult conditions
 - Adaptation to complex buried utility system
 - Develop high working loads in a small cross section within weak limestone rock
 - Reduce concrete cap thickness
 - Reduce schedule
- Rock socket length reduction of up to 3 m feasible from load test results, but reserve capacity desired due to potential for overstressing, which ultimately came true

QUESTIONS?

Geosyntec.com

engineers | scientists | innovators